Single transverse Spin Asymmetry (SSA)

- Large SSAs have been observed at forward rapidities in hadronic reactions: E704/FNAL and STAR/RHIC
- SSA is suppressed in naïve parton models (~α_sm_a/Q)
- Non-zero SSA at partonic level requires
 - Spin Flip Amplitude, and
 - Relative phase
- SSA: Unravelling the spin-orbital motion of partons?

Flavor Dependent SSA: AN of Kaons

- $A_N(K^+)$: positive ~ $A_N(K^-)$: positive $\neq 0$ for 0.2 $\langle x_F \rangle < 0.3$
- In disagreement with naïve expectations (small sea-quark polarization for K⁻)
- Energy dependent A_N with 62 GeV data from Run6 with higher x_F reach

Rapidity Dependent High-p_T Measurements

- At the RHIC energies, hard scattering processes at high-p_T become important
- Partons are expected to loose energy in the dense matter
- Different rapidities provide different densities of the medium: Sensitive to the dynamics
- "Dialing" initial condition channel
- Largest medium effect at midrapidity ("Scale" to multiplicity)?
- Rapidity dependent high-p_T
 suppression factors: provide
 information on dynamical medium
 effect

R_{CP} and R_{AUAU} vs η for AuAu @200 GeV

- No significant rapidity dependent Nuclear Modification Factor (NMF) observed
- NMF at forward: Interplay between final state medium effects (energy loss) and entrance channel effects/kinematics
- 62 GeV data provide kinematic effects on NMF near the kinematic limit (x_F~1)

A_N of π^+ and π^-

- FS (Front+Back) setting: 2.3°+2.3° and 4°+4°
- Statistical errors only
- Systematic error estimated ~ 25%
- point-to-point variations include p_T -dependence of A_N from p_T variations in p_T bins
- $A_N(\pi^+)$: positive ~(<) $A_N(\pi^-)$: negative: 5-10% in 0.1 < x_F < 0.3
- p_T range is limited by PID and statistics

A_N of proton and pbar

- $A_N(pbar) \neq 0$ and positive
- $A_N(p) \sim 0$: At this kinematic region, protons are mostly from polarized beam proton, but only ones showing $A_N \sim 0$
- Need theoretical inputs

AN for Kaons

Anselmino and Murgia PLB442 (1998) 470-478

- Strong strangeness FF dependence in prediction
- If main contribution to A_N at large x_F is from valence quarks: $A_N(K^+)\sim A_N(\pi^+)$, $K^-\sim 0$
- BKK (Binnewies, Kniehl, Kramer 1995)

Determination of Single Spin Asymmetry: A_N

Asymmetries are defined as

$$A_{N} = (\sigma^{+} - \sigma^{-})/(\sigma^{+} + \sigma^{-}) = \varepsilon / P$$

For non-uniform bunch intensities

$$\epsilon = (N^+/L^+ - N^-/L^-) / (N^+/L^+ + N^-/L^-)$$

$$= (N^+ - L^*N^-) / (N^+ + L^*N^-)$$
where L = relative luminosity = L^+ / L^-

and the yield of in a given kinematic bin with the beam spin direction is N^+ (up) and N^- (down).

- The polarization \mathcal{P} of the beam was ~50% in the RHIC Run-5 (Blue beam)
- Beam polarization \mathcal{P} from on-line measurements: (systematic uncertainty ~15%)

Rcp at 62 GeV: Energy Conservation at Large x_F

Rcp at 62 GeV < Rcp at 200 GeV at forward (y~3)

- Interplay between suppression, Cronin effect, and
- Nuclear medium dependent "Sudakov Effect" near the kinematic limit
- Cannot be due to longitudinal extension of medium
- 62 GeV pp data analysis in progress